WBS 1.2 EMU Electronics

T.Y. Ling

DOE/NSF Review, May 9, 2001

Outline

- System Overview
- Status, Schedule, Cost
- Technical Progresses
- Conclusion

Functions of Electronics

- Acquire precise muon data for off-line analysis
 - Cathode strips: precise azimuthal (bending)
 position in each layer by interpolation of
 induced strip charges.
 - Anode wires: precise timing and coarse radial position.
- Generate primitives for Level-1 Trigger
 - Identify Local Charged Track segments using cathode and anode signals

Front-end Requirements

Cathode

- Low Noise: < 25 e's/pF</p>
- Shaper peaking time: 100 ns
- Digitization precision: 12-bit
- Dynamic range: > 16 MIPs
- Non-linearity: < 1% over full range
- Calibration precision: < 1% over full range

Anode

- Low Noise: 0.5 fC @ 0 pF; 1.7 fC @ 200 pF
- Shaper peaking time: 30 ns
- Two threshold discriminator
- Time slew: 3 ns

Trigger Requirements

Cathode LCT

- Identify cathode track segment and use angle of segment for P_t trigger
- For P_t threshold of 20-40 GeV requires ∆p/p < 30% (in order to limit single muon trigger rate in Level-1 to a few KHz)
- Track hits must be located to within ½ strip width in each chamber layer

Anode LCT

- Form cathode track segment.
- Tag bunch crossing of track segment with ≥ 92 % efficiency per chamber

System Layout

Baseline Scope

96ch Cathode Front-end Board

16ch Anode Front-end Board

Anode LCT Board (1 board / CSC)

DAQ-Motherboard (1 board / CSC)

Detector Dependent Unit (DDU)

Cathode LCT /TRIG-MB (1 board /CSC) 396* boards + cables

Clock Control Board (1 board/ Crate)

Low Voltage Distribution Boards

Low Voltage Supply System

1900* boards + cables

9742* boards + cables

396* boards + cables

396* boards + links

33* boards (9U)

66* boards

396* boards + cables

* numbers include 10% spare

Institutional Responsibilities

Schedule in EMU Project File

3/1/01 VME Back-plane ready

3/1/01 New Prototype Boards Ready

3/1/02 Final Prototype Boards

10/1/02 Begin Production

9/30/04 Finish production

CFEB & AFEB

10/1/00 Start procurement (ASIC,components)

1/4/01 Begin Board production

5/18/01 Deliver first batch of prod. Boards

9/30/03 Finish production

ALCT

6/11/01 Deliver Final Prototype

9/27/01 Pre-production boards ready

10/1/01 Begin production

9/30/03 Finish production

Status: On-Chamber Boards

CFEB (Final Prototype)
Production started 2/01
Deliver first 120 boards ~7/01

Design finalized. Start production 7/01(?)

LVDB

AFEB (Final Prototype)
Production started 2/01
Deliver first 600 boards 6/01

ALCT (Next to final prototype)
Final prototype by 7/01
Pre- production board 10/01

CFEB Production Cost (M&S)

For baseline scope: 1900 boards

	Budget (\$)	Actual (\$)	
	Budget (ψ)	Committed	Need to finish
Preamp/Shaper	386,254	343,000	
Switched Capacitor Array	511,987	448,000	
Comparator	255,170	172,000	
ADC	208,467	211,748	
FPGA	149,765	27,101	66,000
Other components	584,370	542,840	40,000
ST Regulators			19,000
pc boards	515,270	120,565	5,000
board assembly	190,101	139,812	5,000
Signal Cables (from CSC)	187,346	146,897	
Inter-CFEB Cables	26,918	7,544	
Total	3,015,648	2,159,507	135,000

AFEB Production Cost (M&S)

For baseline scope: 9742 boards

	Budget (\$)	Actual Committed (\$)
Preamp/Shaper/Discriminator	212900	215000
Delay Chip		93000
other components pc boards	97419 31176	79000 8000
board assembly	97419	58000
AFEB to ALCT cables	286682	298000
Total	725,596	751,000

Progresses: On-chamber Boards

- Integrated electronics system successfully tested with CSC prototype at GIF, CERN (8/99).
- CFEB, AFEB design performance achieved.
- First on-chamber ALCT prototype board produced (3/00) and tested (5/00).
- Radiation tolerance tests for all on-chamber prototype boards (6/00).
- Magnetic field tolerance tests (8/00).
- AFEB layout finalized (9/00)
- Spark protection circuits added on CFEB and tested. Layout of CFEB finalized. (12/00).

Cathode Front-end Board

Gain 0.83 mV/fC
Linearity 0.6%, 0 - 1.7 V
Dynamic range 0 - 18 MIP
System "noise" 1.25 mV (rms)

Includes Pre-Amp noise, SCA pedestal variation, plus all other on-board noise.

Measured with CFEB mounted on fullsize CSC chamber.

Anode Front-end Board

Amp Gain Min Threshold 7 fC @ 180 pF **Slewing time** 3 ns

6.5 mv/fC

LHC Radiation Background

- Radiation Levels in EMU (M. Huhtinen)
 Integrated over 10 LHC years (5x10⁷ s at 10³⁴ cm⁻²s⁻¹)
 - Neutron Fluence (>100 keV): $(0.02 6) \times 10^{11} \text{ cm}^{-2}$
 - Total lonizing Dose: (0.007 1.8) kRad

Radiation Tolerance Tests

- Measured Single Event Effect (<u>SEE</u>) and <u>Total</u> lonization Dosage (<u>TID</u>) effect with 63 MeV proton beam. (At UC Davis, 4-6/2000)
- Measured effects due to <u>Displacement</u> damage of bipolar and biCMOS w/ 1 MeV neutrons (At OSU, 4-6/2000)

Results:

- Negligible degradation of analog performance due to TID (>10 Krad) or displacement (2x10¹² cm⁻² neurons)
- No latch-ups observed up to proton fluence of 2x10¹² cm⁻²
- SEU in FPGA's observed and Cross sections measured.
 All SEU's recoverable by reloading FPGA's. SEU rate at peak LHC lumi manageable for CFEB, but higher for ALCT.

Radiation Test Setup

Preamp-Shaper ASIC

- No single event latch-up for proton fluence of 2.28x10¹² p/cm²
- No shift register errors
- Gain decreases by factor of 2.8, from 0-300 Krads (~ 2 hr run).
 Not a problem at LHC rates.
- No change in amplifier noise 0-30 kRad.

Switched Capacitor ASIC

- No single event latchup for proton fluence of 1.7x10¹² p/cm²
- No degradation of analog performance
- Slight degrease in digitized pulse height vs dose due to output amp gain drop. Not a problem at LHC rates
- Negligible change in noise and pedestal 0 -10 kRad

Comparator ASIC

- No single event latch-up for proton fluence of 1.1x10¹² p/cm²
- Shift of thresholds and offsets < 0.4 mV

Summary of SEU Measurements

Device (Function)	Proton Fluence (10 ¹¹ cm ⁻²)	Dosage (kRad)	Number of SEU's	SEU Xection (10 ⁻¹⁰ cm ²)
XILINX Spartan XCS30XL				
(Readout Controller)	1.0	13.4	27	2.7
XILINX Spartan XCS30XL				
(Multiplexer)	2.9	38.1	34	1.2
XILINX CPLD XC9536XL				
(Chip 1)	2.8	37.8	106	2.0
XILINX CPLD XC9536XL				3.8
(Chip 2)	3.1	41.3	117	
XILINX Virtex XCV50				
(Readout Controller & MUX)	0.9	12.5	16	1.7
Altera Chip on ALCT	1 SEU / proton fluence of 4.4x10 ⁸ cm ⁻²			23

Status: Off-Chamber Electronics

First Prototype Boards produced and tested (8.99)

Next Prototype Boards in progress.

Integrated System Test (8/99)

Event from X5 Beam test (8.99)

Progresses: Off-chamber Boards

- Specifications of and inter-connections between DMB, TMB, and CCB) determined. (2/01)
- Custom VME Backplane
 - Use GTLP @ 80 MHz (replaces channel links in trigger path)
 - Design finished. Full size backplane (21 slots) ordered (4/01)
- New DAQ Motherboard Prototype (DMB-01)
 - New prototype design, schematics and layout finished (3/01)
 - Partially assembled board under tests (5/01)
- New Trigger Motherboard +CLCT Prototype (TMB-01)
 - Schematics nearly finished (4/01). Layout will be done in 5/01.
- New Clock Control Board Prototype (CCB-01)
 - Mezzanine card (TTCrx) schematics finished (4/01)
 - Layout of CCB finished (4/01)

Peripheral VME Crate Organization

DMB-01

Prototype II – Similar Architecture as DMB-99

- VME custom backplane signals added
- VME Slow control (XILINX Spartan II) added
- 3 FPGA/CPLD consolidated into 1 XILINX Virtex E for fast control
- Interface for low voltage monitoring added
- HP-GLINK TI-TLK2501

(Keep comp. with old DDU; lower power, cheaper chips, 8b/10b encoding/decoding, ...)

Block Diagram of DMB

DMB-01 Layout

CCB-01

CCB-99 CCB-01

Connections to TMB, DMB, MPC	Cables	Backplane
Interface logic	LVDS	LVDS + GTLP
Number of serviced modules	6	19
Total number of signals to modules	24 (out)	129 (in/out)
Interface to TTC	Old TTCrx	New TTCrx
Fast control bus signals	no	yes
Reloading protocol signals	no	yes
Special purpose bus signals	no	yes
FPGA Technology	Altera 10KA	Altera 10KA
		(on mezzanine card)

CCB-01 Block Diagram

Conclusions

- Performance requirements met for CFEB, AFEB.
- Tests on radiation tolerance, magnetic field tolerance, spark protection done successfully.
- Production of CFEB and AFEB started (2/01).
 It is on-schedule and under budget (CFEB).
- ALCT board has been redesigned, largely motivated by radiation test result. Pre-production boards expected in ~10/01.
- LVDB Production start when ST regulators are delivered (7/01?)
- Off-chamber electronics: Good progresses made on next round of prototype boards and on VME custom backplane.